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Abstract

In this work, vapor–liquid equilibria (VLE) calculations for a continuous mixture are carried out. The Peng–Robinson EOS is employed,
and a new approach for parameter evaluation is proposed, using group contribution methods. This approach was possible through the use
of a convenient choice for the characteristic continuous index. Multi-indexed continuous mixtures are focused on, which has been avoided
in the literature probably because of the mathematical complexity of such modeling. Two algorithms were proposed for VLE calculations
(flash withP andT fixed, bubble and dew points) and three kinds of continuous mixtures (linear paraffins, polyunsaturated fatty acids
(PUFA) and oil fractions) were analyzed. ©2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

The concept of continuity of a given mixture is ap-
plied whenever that mixture is so complex that it is no
longer worthwhile to distinguish among individual chem-
ical species; instead, an index (such as number of carbon
atoms, boiling point or chromatographic retention time) is
chosen to characterize each component and the continuity
of the index is assumed. Mole fractionxi of speciesAi

is replaced byf(x)dx, the molar fraction of material with
an index in the (x, x+dx) interval. Functionf(x) is known
as the mixture distribution function (DF), wherex is the
continuous index of the mixture.

In some cases, more than one index must be used to
completely characterize the continuum of species, which
increases the mathematical complexity of any phenomena
described with a continuous approach. Ifx is a vector of
continuous indices, the DF of the system is denoted byf(x)
and the molar fraction of species with indices in the region
(x, x+dx) is given by the analogous expressionf(x)dnx.

Distribution functions exhibit an obvious normalization
condition given by
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∫ ∞

0
· · ·

∫ ∞

0
f (x)dnx = 1 (1)

Vapor–liquid equilibria (VLE) calculations for complex
mixtures have been traditionally accessed through a
Pseudo-Component Method, that is basically a ‘lumping’
approach in which key components are chosen to fully char-
acterize the whole mixture. This way, a simple modeling
procedure can be adopted, but results are highly dependent
on the choice of the set of pseudo-components [1]. The
development of a continuous thermodynamics [2–5] had
shown great advantages in many aspects [6–10].

However, the use of multivariate DFs has been avoided
probably because of the already mentioned mathematical
complexity. Systems that clearly needed more than one index
have then been approximated by more than one family of
species:

f (x) → fi(xi) (2)

Another critical point is the choice of the continuous index.
Some authors chose a natural identification variable, such
as molecular weight or boiling point [6,7]. However, it is
sometimes difficult to relate such indices with other ther-
modynamic properties, especially equations of state (EOS)
parameters, and fitted polynomials have been employed [9].

This work aims at the modeling of VLE for continuous
mixtures that are naturally characterized by multivari-
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ate DFs, the most important examples being petroleum
fractions. The well-established Quadrature Method [7] is
employed for solving flash problem (at fixedT andP) and
bubble and dew point problems for such mixtures. This
method was considered the most suitable, once it does not
show the error in material balance of the Method of Mo-
ments [7]. EOS parameters are estimated through group
contribution methods instead of the traditional fitted poly-
nomials. This was possible admitting that the number of
particular groups was the vector of continuous indices itself,
which is also an original contribution of the present work.

2. Continuous thermodynamics for a multi-indexed
mixture

As mentioned in Cotterman et al. [9], the fugacity coeffi-
cient is calculated as

RT ln[φ(x)]

=
∫ ∞

v

{(
δP

δf (x′)

)
T ,v,x′=x

− RT

v

}
dv − RT ln(z) (3)

whereδ stands for the functional derivative of the EOS with
respect to the DF.

The present work uses Peng–Robinson cubic EOS [11] to
describe both liquid and vapor phases:

P = RT

v − b
− a

(v + δ1b)(v + δ2b)
(4)

with the parameters for the continuum of species defined by

a(x, T )

= �aR
2 [Tc(x)]2

Pc(x)

{
1 + m[ω(x)]

[
1 −

(
T

Tc(x)

)1/2
]}2

(5)

b(x) = �bR
Tc(x)

Pc(x)
(6)

where

m[ω(x)] = r0 + r1ω(x) + r2ω(x)2 (7)

Mixing rules are written as

b =
∫ ∞

0
· · ·

∫ ∞

0
f (x)b(x)dnx (8)

a(T ) =
[∫ ∞

0
· · ·

∫ ∞

0
f (x)

√
a(x, T )dnx

]2

(9)

When the functional derivatives in Eq. (3) are conducted us-
ing expressions (4)–(9), Eq. (3) becomes (after integration)

ln[φ(x)] = b(x)

b
(z − 1) − ln(z − B) − a(T )

(δ1 − δ2)bRT

×ln

[
v + δ1b

v + δ2b

] [
2
a′(x, T )

a(T )
− b(x)

b

]
(10)

Table 1
Parameters of Peng–Robinson EOS

δ1 1 + √
2

δ3 1 − √
2

�a 0.45724
�b 0.07780
r0 0.37464
r1 1.54226
r2 −0.26992

with the compressibility factor defined as usual:

z = Pv

RT
(11)

and additional entities by

a′(x, T ) =
√

a(x, T )

∫ ∞

0
· · ·

∫ ∞

0
f (x)

√
a(x, T )dnx (12)

B = Pb

RT
(13)

Peng–Robinson EOS parameters can be found in Table 1.
Depending on the number of continuous indices, some

particular aspects must be taken into account, which will be
analyzed in the following sections. However, it will always
be used a product of gamma distribution functions for the
DF of feed or initial mixture:

f (x) =
n∏

i=1

εi
ηi+1x

ηi

i exp(−εixi)

0(ηi + 1)
=

n∏
i=1

f (xi, εi, ηi) (14)

This DF obeys the normalization constrain Eq. (1) and is
able to emulate a discrete case where a single molecule is
present:

lim
η1,ε1→∞
η1/ε1=d1

· · · lim
ηn,εn→∞
ηn/εn=dn

f (x) =
n∏

i=1

δ(xn − dn) (15)

3. Group contribution methods

Models for a(x, T) and b(x) have been traditionally ac-
cessed through fitted polynomials [1,6,7,9,12] instead of
their natural formulations given by Eqs. (5) and (6). As it
can be seen, these equations demand a method to predict
molecular properties (critical coordinates, for instance) as
functions of the continuous vector parameterx.

This can be carried out with well-established group con-
tribution methods, as Joback [13] predictions for the acen-
tric factor, normal boiling point and critical coordinates. If
x is the number of groups in the molecular structure, the
expressions are

ω(x) = 3

7

Tb(x)/Tc(x)

1 − Tb(x)/Tc(x)
log[Pc(x)] − 1 (16)

Tb(x) = 198+
∑

1Tb(x) (17)
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Tc(x) = Tb(x)
[
0.584+ 0.965

∑
1Tc(x)

−
(∑

1Tc(x)
)2

]−1

(18)

Pc(x) =
[
0.113+ 0.0032Na−

∑
1Pc(x)

]−2
(19)

where Na stands for the total number of atoms in a molecule.
All summations are performed over the groups present on
the molecule, accounting individual contributions of each of
these increments.

For vapor pressure prediction, the following group
contribution method is employed [13]:

P sat(x, T )

= exp

{
Tb(x)/Tc(x)

1 − Tb(x)/Tc(x)

[
1 −

(
Tc(x)

T

)]
log[Pc(x)]

}
(20)

3.1. Case 1: single-indexed mixture — linear alkanes

An illustrative example for the single index case is a con-
tinuous mixture of linear alkanes. Its utility lies in the fact
that it is a common strategy for some particular applica-
tions in petroleum processing theory, to study the behavior
of oil as constituted basically by linear paraffinic molecules.
A typical molecule is then completely characterized by the
total atoms of carbon present in it (x) and Joback’s vector
for this case is then given by

J (x) =
[

–CH2–
–CH3

]
=

[
x − 2
2

]
(21)

and individual contributions by the values in Table 2 (which
has also additional group contributions that will be used in
Cases 2 and 3).Summations in Eqs. (17), (19) and (20) are
then performed as follows:∑

1Tc(x) = J t (x)1Tc(x) = 2(0.0141) + (x − 2)0.0189

(22)∑
1Pc(x) = J t (x)1Pc(x) = 2(−0.0012) (23)

Table 2
Group contributions

Increments 1Tc 1Pc 1Tb

–CH2– 0.0189 0 22.88
–CH3 0.0141 −0.0012 23.58
–CH= 0.0129 −0.0006 24.96
–COOH 0.0791 0.0077 169.09
> CHr

2 0.0100 0.0025 27.15
>CH–r 0.0122 0.0004 21.78
=CH–r 0.0082 0.0011 26.73
>C=r 0.0143 0.0008 31.01

Fig. 1. PUFA.

∑
1Tb(x) = J t (x)1Tb(x) = 2(23.58) + (x − 2)22.88

(24)

3.2. Case 2: double-indexed mixture — PUFA

For this case is employed a mixture of polyunsaturated
fatty acids (PUFA). These mixtures are important because
the human body is unable to synthesize them and relies on
dietary intake for supply. This dietary supply could be veg-
etable oil, but the mixture present in fish oil exhibits higher
health benefits. Some of its components decrease the danger
of premature birth and a separation procedure would be of
great interest. Of course, there is the problem of thermosen-
sitivity; and supercritical extraction with CO2 would be the
preferred operation. However, it is obviously useful to have
knowledge on volatility and other VLE information.

A typical molecule of this mixture is depicted in Fig. 1
where it can be seen that an index corresponds to the number
of carbon atoms in the unsaturated part of the molecule and
the other to the saturated one.

Summations for this case are completely analogous to
the ones described in Eqs. (22)–(24), and employ a Joback
vector with the form

J (x) =




–CH=
–CH2–
–CH3
–COOH


 =




2(x1 − 2)/3
(x1 + 1)/3 + x2
1
1


 (25)

and values of Table 2.

3.3. Case 3: three-indexed mixture — oil fractions

Mixtures chosen to be characterized by three-indexed con-
tinua were typical petroleum fractions, such as gasoil, gaso-
line or naphtha. Once species present in gasoil ranged from
simple linear alkanes to very complex molecules with dis-
tributed aromatic and naphthenic rings over its structure, an
arbitrarily structural description for typical molecules was
defined. An elementary model for a continuous species rep-
resentation was established, based on the conclusions of
Quann and Jaffe [14] about the most common patterns of
molecular structures present in petroleum:
1. Paraffinic compounds and paraffinic portions present in

multifunctional compounds are mainly linear.
2. Ring compounds are mainly cata-condensed, which

means that, at each pair of rings, an ‘ascending’ dis-
placement is observed, in the aromatic region (Fig. 2);
and in the naphthenic region (Fig. 3).

3. Multifunctional compounds show a single paraffinic
ramification.
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Fig. 2. Cata-condensation of aromatic rings.

Fig. 3. Cata-condensation of naphthenic rings.

Even though other configurations may be found in
petroleum fractions (isoalkanes and other kinds of juxtapo-
sition of naphthenic and/or aromatic rings), we opted for the
simplest way to access the maximum number of molecular
properties with the minimum number of continuous indices.
For that, the conclusions of Quann and Jaffe [14] seemed
to be the most adequate, and they state that isomers of a
molecular class, at a given carbon number, exhibit similar
physical, chemical, thermodynamic, and performance prop-
erties, since this is the limit of our analytical detail, which
minimizes the effect of not considering such isomers.

As already mentioned, the present representation is
based on admitting three types of sub-structures contin-
uously present in each species: aromatic sub-structure,
naphthenic sub-structure and paraffinic sub-structure. Each
of these sub-structures will be henceforth characterized by
a non-negative continuous index. The connectivity among
these sub-structures will be arbitrarily set as given in Fig. 4
also admitting the absence of side paraffinic ramifications.

With all these considerations, Joback vector becomes

J (x) =




–CH3
–CH2–
=CH–r

> CHr
2

> C=r

> CH–r




=




1
x1 − 1
1 + x3/2
1 + x2/2
−1 + x3/2
−1 + x2/2




(26)

Fig. 4. Connectivity among sub-structures of a typical molecule.

where the superscript (r) indicates ring increments. Once
again, summations are performed as in Eqs. (22)–(24) with
Eq. (26) and the values in Table 2.

4. Flash at fixedT and P

We begin VLE analysis by the flash calculation withT
and P fixed. Balance equations, equilibrium relations and
normalization restrictions are similar to the ones used for
discrete mixtures. The main differences are as follows:
1. It is a functional-algebraic problem, because DFs are

unknowns instead of the molar fractions of the discrete
case;

2. The traditional summations over the species become in-
tegrals over the continuum spectrum of species.

The DFs of feed, vapor phase and liquid phase will be
denoted byf(x), v(x) and l(x), respectively. Rachford–Rice
equation for flash calculation [15] takes a modified form,
which is

8F(β)=
∫ ∞

0
· · ·

∫ ∞

0

f (x)[K(x, P, T ) − 1]

βK(x, P, T ) + (1 − β)
dnx=0 (27)

Its deduction is analogous to the discrete case, and uses a
normalization condition with the form of Eq. (1). The DFs
of vapor and liquid phases are then given by

l(x) = f (x)

βK(x, P, T ) + (1 − β)
(28)

v(x) = f (x)K(x, P, T )

βK(x, P, T ) + (1 − β)
(29)

where vaporization equilibrium ratio is calculated with

K(x, P, T ) = v(x)

l(x)
= φL(x, P, T )

φV (x, P, T )
(30)

and vapor fraction is given by

β = V

F
(31)

It must be noticed that the dependence of the DFs onT and
P was omitted for notation simplicity.

4.1. Simulations

Once the complete procedure is established, one can con-
duct simulations of the model. These simulations are carried
out with the Quadrature Method as described in Cotterman
and Prausnitz [7]. It is an interesting method based on the
fact that only integrals of the DFs are needed for VLE cal-
culation. Therefore, the system of Eqs. (27)–(31) becomes
algebraic, once DFs must be evaluated only on quadrature
points. An interpolation procedure can be used if informa-
tion on DFs must be recovered between contiguous points.

For this method, Laguerre quadrature was used, which is
based on the orthogonality of Laguerre polynomials over the
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interval (0,∞). Quadrature points (xqi) are thenq roots of
the Laguerre polynomial of degreenq:

Lnq(x) =
nq∑

k=0

(−1)k+nq

[
nq!

(nq − k)!

]2
xnq−k

k!
(32)

Quadrature weights (wqi) are given by

wqi =
[

nq!

Lnq+1(xqi)

]2

xqi exp(xqi) (33)

A generic successive substitution algorithm can then be writ-
ten:
1. Input variables:T, P, EOS parameters, andnq;
2. Input or statistical fitting of feed DFs’ parameters;
3. Calculation of quadrature points and weights:wqi and

xqi ;
4. Seti=0;
5. Estimation off q = f (x) andK

q
i = (P sat(x, T ))/P on

quadrature points;
6. Calculation ofβ with 8F(β)=0;
7. Calculation oflqi = f q/(βK

q
i + (1 − β)) and v

q
i =

f qK
q
i /(βK

q
i + (1 − β)) on quadrature points;

8. Calculation ofKq

i+1(x) = (φL(x, P, T ))/(φV (x, P, T ))

on quadrature points;
9. K

q

i+1 = K
q
i ?

If not, makeK
q
i = K

q

i+1, i=i+1 and go to (6).
10. Print graphical and numerical results.

Examples can be found in the literature [16,17] for the
mentioned statistical fittings using experimental data for real
mixtures, as though for typical experimental characteriza-
tion. Such fittings are important and involve, basically, an in-
tegration of the DFs to produce ‘lumped’ information which
can than be compared with experimental data. However,
this procedure is also beyond the scope of this work, which
concerns, mainly, the formulation and resolution of VLE of
multi-indexed continuous mixtures.

So simulations will be conducted considering the already
mentioned cases with arbitrarily chosen parameters for the
feed DFs.

4.2. Case 1

It is the simplest case, and related integrals are calculated
as internal products of two vectors, which makes computa-
tional routines very fast:

∫ ∞

0
g(x)dx ∼=

nq∑
i=1

wqig(xqi) (34)

Conditions employed wereη=10, ε=1, T=450 K and
P=1 bar, andβ was found to be 0.4958. The following
figures, Figs. 5 and 6, were also obtained.

In Fig. 5, each line corresponds to an iteration on the
outer loop of the algorithm (iteration onKq

i ); the spots are
iterations on Eq. (27) on a given line. In Fig. 6, the results

Fig. 5. Rachford–Rice equation solution (Case 1,η=10, ε=1, T=450 K
and P=1 bar).

are shown in terms of quadrature points; if a smoother graph
is needed, an interpolant DF can be fitted.

As can be noticed in Fig. 6, in liquid phase, the amount
of heavy compounds is increased, and lighter species are
preferably present in vapor, which is physically consistent.
It must be pointed out that 18 quadrature points were used
and errors on integrals were about 0.03%.

4.3. Case 2

This example has an interesting pictorial representation.
Typical integrals can be calculated as quadratic forms, which
is still computationally efficient:

∫ ∞

0

∫ ∞

0
g(x, y)dx dy ∼=

nqy∑
j=1

nqx∑
i=1

wq
y
j wqx

i g(xqx
i , xq

y
j ) (35)

Results forη1=η2=5, ε1=ε2=1, T=650 K and P=1 bar
wereβ=0.6168 and the ones presented in Figs. 7–13.

Fig. 6. DFs of feed, vapor phase and liquid phase (Case 1,η=10, ε=1,
T=450 K andP=1 bar).
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Fig. 7. Rachford–Rice equation solution (Case 1,η1=η2=5, ε1=ε2=1,
T=650 K andP=1 bar).

Fig. 8. Feed DF contours (Case 2,η1=η2=5, ε1=ε2=1, T=650 K and
P=1 bar).

Fig. 9. Liquid DF contours (Case 2,η1=η2=5, ε1=ε2=1, T=650 K and
P=1 bar).

Fig. 10. Vapor DF contours (Case 2,η1=η2=5, ε1=ε2=1, T=650 K and
P=1 bar).

Fig. 11. Feed DF (Case 2,η1=η2=5, ε1=ε2=1, T=650 K andP=1 bar).

Once again, in Figs. 8–10, the results are shown in terms
of quadrature points; if a smoother graph is needed, a 2-D
interpolant DF can be fitted. They are of particular interest
since they contain some important information. One may
notice that, once again, physical consistency was achieved,

Fig. 12. Liquid DF (Case 2,η1=η2=5, ε1=ε2=1, T=650 K andP=1 bar).
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Fig. 13. Vapor DF (Case 2,η1=η2=5, ε1=ε2=1, T=650 K andP=1 bar).

with heavier molecules migrating to liquid phase and lighter
ones to vapor phase. However, the effect of one index on
VLE is different from the other’s, which can be seen through
the distortion of liquid DF towards thex1 direction. In fact,
a carbon atom present in one portion of the molecule will
not affect the molecule volatility the same way it would if
it was to be in the other portion. It also must be said that
this phenomenon can be stronger (and useful for separation
techniques) in some particular mixtures.

This time, 20 quadrature points were used, leading to
even smaller errors being observed on the values of the
integrals.

4.4. Case 3

The three-indexed nature of this case introduces some
difficulties and limitations. The calculation of the integrals
related to this case involves at least one iterative loop, which
considerably increases computational time:∫ ∞

0

∫ ∞

0

∫ ∞

0
g(x, y, z)dx dy dz

∼=
nqz∑
l=1

nqy∑
j=1

nqx∑
i=1

wqz
l wq

y
j wqx

i g(xqx
i , xq

y
j , xqz

l ) (36)

The pictorial representation is limited by the fact that four
coordinates would be necessary: three indices and the value
of the DF itself. The solution was to create a gray scale in
which the DF value is directly proportional to the intensity of
the black color. Therefore, if the point (x1, x2, x3) is marked
with a black spot, it means that the molecule characterized
by an index-vector (x1, x2, x3) is the most frequently present
in that mixture. The absence (or trace concentrations) of
species is characterized by light gray spots.

Temperature and pressure employed wereT=675 K
and P=1 bar, feed DF parameters wereη1=η2=η3=5,
ε1=ε2=ε3=1, and the results wereβ=0.6734 and the ones
depicted in Figs. 14–17.

Fig. 14. Rachford–Rice equation solution (Case 3,η1=η2=η3=5,
ε1=ε2=ε3=1, T=675 K andP=1 bar).

Fig. 15. Feed DF (Case 3,η1=η2=η3=5, ε1=ε2=ε3=1, T=675 K and
P=1 bar).

Fig. 16. Feed DF (Case 3,η1=η2=η3=5, ε1=ε2=ε3=1, T=675 K and
P=1 bar).

Remarks on physical consistency are the same as in the
previous case. Quadrature was still able to integrate DFs
with small errors because 20 points were used, but CPU time
increased within three orders of magnitude.
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Fig. 17. Feed DF (Case 3,η1=η2=η3=5, ε1=ε2=ε3=1, T=675 K and
P=1 bar).

5. Bubble and dew point calculation

Dew point and bubble point calculation are important
tasks (for instance, when designing distillation columns) and
Rachford–Rice equation, Eq. (27), can be used for this pur-
pose. For dew point calculation, it is obvious that

β = 1 (37)

v(x) = f (x) (38)

and Eq. (27) becomes

8D(T or P)=ln

[∫ ∞

0
· · ·

∫ ∞

0

f (x)

K(x, P, T )
dnx

]
=0 (39)

to be solved forT or P.
The logarithmic form of Eq. (39) is known to increase the

convergence speed of numerical algorithms used to solve it.
For bubble point calculation

β = 0 (40)

l(x) = f (x) (41)

and Eq. (27) becomes

8B(T or P) = ln

[∫ ∞

0
· · ·

∫ ∞

0
f (x)K(x, P, T )dnx

]
= 0

(42)

whereT or P must be found.

5.1. Simulations

Once again, the quadrature method described in Section
4 will be employed. For these cases, the following generic
successive substitution algorithm can then be written:
1. Input variables:P or T, EOS parameters, andnq;
2. Input or statistical fitting of feed DFs’ parameters;
3. Calculation of quadrature points and weights:wqi and

xqi ;

Fig. 18. Phase envelope (bubble and dew point loci) — Case 1.

4. Seti=0;
5. Estimation off q = f (x) andK

q
i = (P sat(x, T ))/P on

quadrature points;
6. If dew point:vq = f q andlq = vq/K

q
i

If bubble point:lq = f q andvq = K
q
i lq ;

7. If dew point: calculateT or P with 8D(T or P)=0, mak-
ing i=i+1 and recalculatingKq

i and lq = vq/K
q
i at

each iteration
If bubble point: calculateT or P with 8B(T or P)=0,

making i=i+1 and recalculatingKq
i andvq = K

q
i lq at

each iteration;
8. Print graphical and numerical results.

5.1.1. Case 1
Graphical representations of phase envelopes are depicted

as follows. It can be seen that there is a lack of closure. That
is so because of the well known problem of convergence
near critical points, whose treatment is beyond the scope of
the present work (Fig. 18).

5.1.2. Case 2
In this system, closure problem is even worse (especially

in the bubble curve) and must be intensively investigated
if near critical point calculations have to be performed
(Fig. 19).

Fig. 19. Phase envelope (bubble and dew point loci) — Case 2.
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Fig. 20. Phase envelope (bubble and dew point loci) — Case 3.

5.1.3. Case 3
In this example, the closure problem is added to an exces-

sively large computational time and special strategies must
be developed (Fig. 20).

6. Conclusions and remarks

In this work, we described the vapor–liquid equilib-
rium of multi-indexed continuous mixtures, using the
Peng–Robinson equation of state and Joback’s group
contribution method.

In previous works, mixtures that would be obviously char-
acterized by ann-dimensional index have been commonly
approximated asn families of species [18]. In this work, the
multi-functional nature of molecules was respected with the
usage of multi-dimensional indices.

In continuous mixtures context, EOS parameters have
been traditionally addressed through fitted polynomials in-
stead of their natural formulation, which is related to critical
coordinates. So an adequate continuous index was chosen
(the number of molecular groups), which made it possi-
ble to predict these coordinates easily, through Joback’s
method. For VLE calculations, a quadrature method was
chosen, which turns the functional-algebraic system into an
algebraic one. For that, two algorithms were presented.

Results were physically consistent since the amount of
heavy species in the liquid phase increased and the vapor
phase showed the expected increase in lighter species. It
must be said that this effect was not equally distributed
among the indices.

7. Nomenclature

a′, B entities defined by Eqs. (12) and (13)
a, b, m P-R EOS parameter
f(x), v(x), l(x) DFs
J(x) Joback vector
K(x,P,T) vaporization equilibrium ratio
Lnq (x), nq, xq, wq Laguerre quadrature parameters
P pressure
Psat saturation pressure
R universal gas constant
T temperature
Tb(x) normal boiling temperature
Tc, Pc critical coordinates
v molar volume
ω(x) acentric factor
x continuous index
z compressibility factor

Greek letters
β vapor fraction
ε, η parameters of gamma DF
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